CLASS EXAMINATION IN PHYSIOLOGY - SPRING TERM

MEDICAL STUDENTS

Thursday 11 March 1976 - 2 to 4 p.m.

(ALL Questions should be attempted)

The mark allowance is shown at the end of each question - total possible = [125]

Physiology of the Kidney

Section A - Calculations

- 1. A patient is suspected of having a functional tubular defect. Following intravenous glucose infusion glucose starts to appear in the urine at a concentration in plasma ([glucose]_p) = 135 mg/100 ml. Inulin is also infused intravenously at a rate sufficient to maintain a steady [inulin]_p = 21 mg/100 ml. Concentration of inulin in urine ([inulin]_u) = 1.9 g/100 ml. Flow of urine (v_{u}) = 1.5 ml/min.
 - (a) Calculate the amount of glucose which is being reabsorbed per minute in the tubular system. [10]
 - (b) The normal maximal transfer rate $(T_m) \approx 300-350$ mg/min What is the diagnosis? [5]
- pH of tubular fluid (pH_{TF}) = 7.0 in the most distal part of the proximal tubules. The corresponding P_{CO_2} = 42 nm Hg. At the same site $\frac{[inulin]_{TF}}{[inulin]_{TF}}$ = 3.1. Clearence of inulin = 125 ml/min. [Na⁺]_p = 142 nM, [Cl⁻]_p = 104 mM and $[HCO_3]_p$ = 24 mM. $[H_2CO_3]_{TF}$ (mM) = 0.03 x P_{CO_2} (mm Hg). pK = 3.1.
 - (a) Casculate the percentage of filtered HCO₃ which is being reabsorbed in the proximal tubules [25]
 - (b) What is (approximately) [Cl]_{TF} at the end of the proximal tubules? [5]

Section B - Short Answers

- 3. What are the consequences of administering a maximal dose of the carbonic anhydrase inhibitor acetazolamide with respect to \hat{V}_u , urinary excretion rate of Na⁺, HCO₃ and urinary pH? Explain! [10]
- 4. Describe the principle underlying an indirect determination of renal blood flow (RBF). Name a useful indicator substance. [10]

5./

Section B - Short Answers (contd.)

- 5. What is the approximate osmolarity of TF relative to that of plasma in the early distal tubule? Explain the mechanism responsible for this: [10]
- 6. What happens to urea transport in the collecting tubules during
 - (a) antidiuresis
 - (b) water diuresis? Explain!

[10]

- 7. Explain how Na[†] and K[†] move across the distal tubular epithelium. Which hormone regulates these movements? [10]
- 8.. Describe the fate of H secreted in the distal tubule. What is the source of the H secreted? [10]
- 9. Explain why the concentration of creatinine in plasma ([creatinine]_p) can be used as a rough measure of glomerular filtration rate (GFR). [10]
- 10. If a maximal dose of ADH is given to a man during water diuresis, how does the free water clearance (CHO) change? Explain: [10]